Oral immunization using live attenuated Salmonella spp. as carriers of foreign antigens.
نویسندگان
چکیده
A variety of techniques, including the use of live oral vaccines, have been used to deliver antigens to the gut-associated lymphoid tissues in an attempt to initiate production of specific secretory immunoglobulin A for protection against pathogens that colonize or cross mucosal surfaces to initiate infection. A number of attenuated Salmonella mutants are able to interact with the lymphoid tissues in the Peyer's patches but are not able to cause systemic disease. Some of these mutants are effective as live vaccines (i.e., able to protect against infection with the virulent Salmonella parent) and are candidates for use as carriers for virulence determinants of other mucosal pathogens. This has been shown to be an effective means of stimulating significant levels of specific mucosal secretory immunoglobulin A directed against the carrier strains and against a variety of heterologous antigens and has been shown to stimulate production of serum antibodies and cell-mediated responses as well. This review examines the history of this mechanism of vaccine delivery and summarizes the most recent applications of this evolving technology. This is a technique for vaccine delivery with significant potential for influencing the management of infectious diseases on a large scale. It can be used not only for vaccines against enteric bacterial pathogens but also for vaccines against a variety of other bacteria, viruses, and parasites. The results obtained to date are encouraging, and there is great potential for development of safe, effective, affordable vaccines.
منابع مشابه
Salmonella flagellin is not a dominant protective antigen in oral immunization with attenuated live vaccine strains.
We found that oral immunization with flagellum-defective mutant strains of Salmonella enterica serovar Typhimurium with the ClpXP-deficient background protected mice against oral challenge with the virulent strain. These data indicate that Salmonella flagellin is not a dominant protective antigen in oral immunization with attenuated live vaccine strains.
متن کاملAutodisplay: efficacious surface exposure of antigenic UreA fragments from Helicobacter pylori in Salmonella vaccine strains.
Live attenuated Salmonella strains expressing antigens of pathogens are promising oral vaccine candidates. There is growing evidence that the topology of expression of the foreign antigens can have a dramatic impact on the immunogenicity. We examined the potential of the AIDA-I (Escherichia coli adhesin involved in diffuse adherence) autotransporter domain to display antigenic fragments of the ...
متن کاملEnhancement by ampicillin of antibody responses induced by a protein antigen and a DNA vaccine carried by live-attenuated Salmonella enterica serovar Typhi.
Live-attenuated Salmonella species are effective carriers of microbial antigens and DNA vaccines. In a mouse model, the immunoglobulin M (IgM) and total antibody levels directed toward the lipopolysaccharide of Salmonella enterica serovar Typhi were significantly enhanced at day 21 after oral immunization with live-attenuated serovar Typhi (strain Ty21a) when ampicillin was concomitantly admini...
متن کاملEnterobacterial common antigen mutants of Salmonella enterica serovar Typhimurium establish a persistent infection and provide protection against subsequent lethal challenge.
Infection with Salmonella spp. is a significant source of disease globally. A substantial proportion of these infections are caused by Salmonella enterica serovar Typhimurium. Here, we characterize the role of the enterobacterial common antigen (ECA), a surface glycolipid ubiquitous among enteric bacteria, in S. Typhimurium pathogenesis. Construction of a defined mutation in the UDP-N-acetylglu...
متن کاملAntibiotic-free plasmid stabilization by operator-repressor titration for vaccine delivery by using live Salmonella enterica Serovar typhimurium.
Live, attenuated bacteria are effective vectors for heterologous antigen delivery. However, loss of heterologous gene-bearing plasmids is problematic, and antibiotics and their resistance genes are not desirable for in vivo DNA vaccine delivery due to biosafety and regulatory concerns. To solve this problem, we engineered the first vaccine delivery strain that has no requirement for antibiotics...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical microbiology reviews
دوره 5 3 شماره
صفحات -
تاریخ انتشار 1992